Sustainable repurposed products from decommissioned composite material wind turbine blades

Wind Turbine Blades: Future Challenges 01.12.2020

Paul Leahy

University College Cork

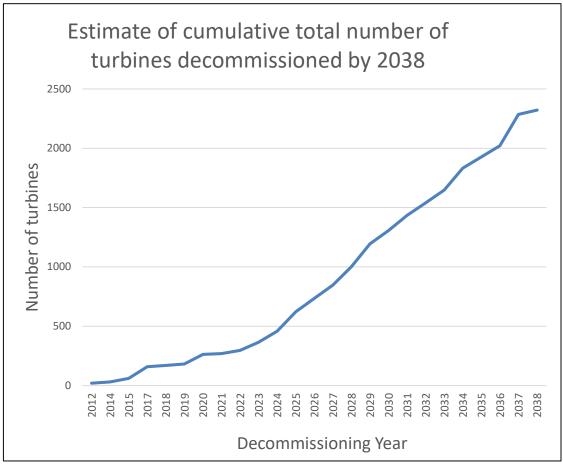
Re-Wind Team

University College Cork, Queens University Belfast, Georgia Tech, Cork Institute of Technology

National Science

End of life wind turbine blades: a circular economy challenge

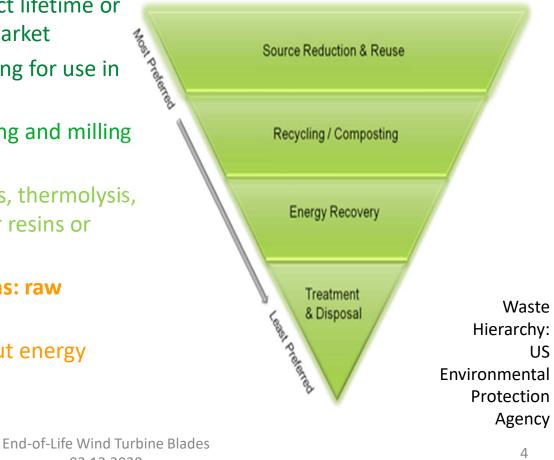
- Wind turbine blades primarily composed of nonbiodegradable GFRP composites
- Annual global blade waste is expected to reach 40 million tonnes by 2050
- Current solutions: incinerate, stockpile, landfill, grind for aggregates
- Can feasible repurposing options be found?


Cut GFRP composite waste Image: BRIO project Credit: Elhuyar Fundazioa

Turbine end-of-life & the mounting GFRP blade 'waste' issue

Approximate total number of turbines to be decommissioned in Ireland by 2038:

2323



Emma Delaney, QUB

US EPA Waste Hierarchy

Repurposing lies near the top of the Waste Hierarchy

- **Prevent:** either extend project lifetime or • sell blades on secondhand market
- Repurposing: Remanufacturing for use in new products
- **Recycling:** Shredding, grinding and milling for filler for FRP or concrete
- Materials Recovery: Pyrolysis, thermolysis, solvolysis to recover polymer resins or fibers or gasses for energy
- **Co-processing in cement kilns: raw** • material substitution
- **Incineration** with or without energy • recovery, then landfill ash
- Landfilling •

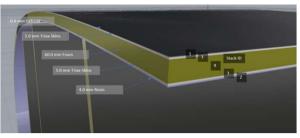
02.12.2020

Blade Repurposing: Methodology

More than 50 blade repurposing concepts identified initially

Design Office exercise (Winter 2019, Belfast) will develop and refine three concepts

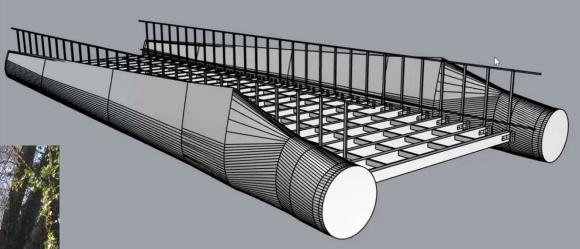
The success of reuse cases depends on **technical feasibility**, **location** & **social**, **environmental** and **economic** sustainability


A **transdisciplinary approach** has developed tools to assess all of these:

- All-Ireland blade geodatabase
- 3-D LiDAR scanning
- Blade geometry reconstruction software
- Structural analysis & testing methods
- Community engagement methodology
- Lifecycle analysis (LCA)
- Robust set of internationally-deployable success indicators : environmental, social and economic

Disciplines: Architecture, Structural Engineering, Sociology, Energy Engineering, Business Model Discovery, bine Blades Geographical Information Science 02.12.2020

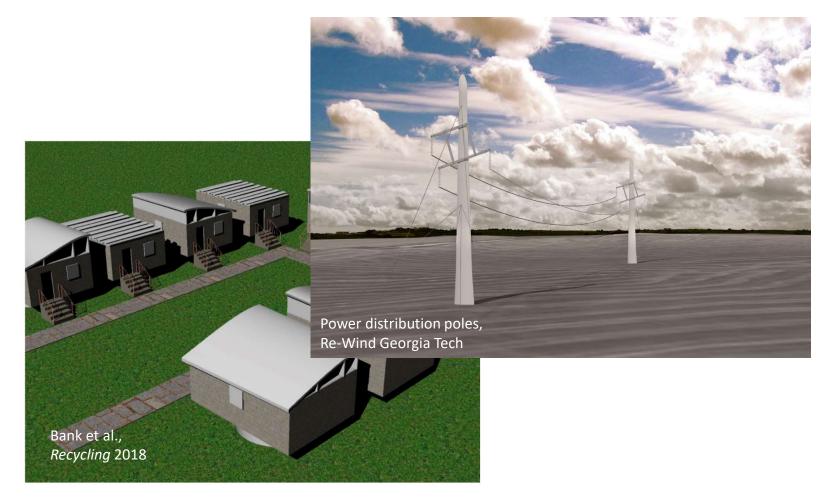
GIS Dashboard & Database



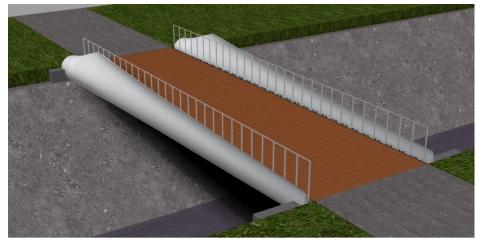
Tool allows database to be queried by: location, turbine type, blade dimensions, projected decommissioning date (Re-Wind, QUB Team)

Greenway Blade-Bridge Project

- 5.5m bridge using N27 blades
- Modelling estimates 5 x FOS
- Strength testing on 3rd blade
- Development of fasteners
- Great enthusiasm & replicable



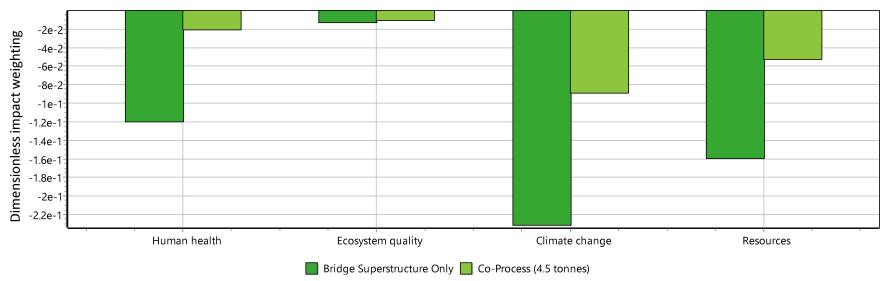
(Zoe Zhang, Re-Wind, Georgia Tech)


Angie Nagle | ReComp 25 Nov | Sustainability Assessment of a Pedestrian Bridge

Blade repurposing use cases

Bridge Repurposing: LCA Boundary Setting & Assumptions

Functional Unit: Disposition of 4500 kg blade waste over 60 years (Cradle to Grave)



- Blades transported Belfast to Cork
- Lower 2/3 blade replaces steel girders made with partially recycled material
- Top 1/3 blade sent to landfill
- Blades coated in epoxy protective layer
- End of Life Plan: Co-processing of GFRP girders, recycling of hardware

Wooden decking material, abutments, and maintenance schedule assumed equal to bridge made with steel girders

Presented by Angie Nagle, ReComp 25th November 2020

LCA: Comparison of Baseline to Bridge Girder Substitution

Method: IMPACT 2002+ V2.15 / IMPACT 2002+ / Normalisation Comparing 1 p 'Bridge Superstructure Only' with 1 p 'Co-Process (4.5 tonnes)';

Blade End-of-Life:

Blade bridge is more environmentally beneficial than co-processing in cement kiln.

Blade repurposing : key results

- Technical feasibility of repurposing has been demonstrated
- Baseline scenario comparisons:
 - Co-processing environmentally superior to landfill
 - Blade bridge superior to co-processing
- Integrated environmental, social and economic assessments
 - P. Deeney, article in review" Multi-criteria Decision Analysis using the Sustainable Development Goals for end-of life choices for wind turbine blades"

Thank you!

Acknowledgements to Re-Wind research team at University College Cork, Queens University Belfast, and Georgia Tech and Kieran Ruane of Cork Institute of Technology

Bridge Design: Zoe Zhang, Georgia Tech GIS: Emma Delaney, Queens University Belfast Life Cycle Analysis: Angela Nagle, UCC

Re-Wind contacts:

www.re-wind.info

paul.leahy@ucc.ie

twitter.com/ReWindUCC

